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1 Tetration Analysis

Let a > 0, let b0 = 0, and let bn+1 = abn for all integers n ≥ 0. The purpose of this note is to determine the
limiting behavior of the sequence {bn}.

1.1 Case I: a > 1

We will rely on the fact that x 7→ ax is strictly increasing (i.e., if x < y then ax < ay).

(1) Observe that b0 = 0 < a = b1, and if bn < bn+1 then bn+1 = abn < abn+1 = bn+2. Then induction on n
shows that the sequence {bn} is increasing.

(2) Suppose that bn → L. Then bn+1 = abn → aL by continuity of x 7→ ax. However, the shifted sequence
{bn+1} must converge to the same limit as the original sequence {bn}. This forces aL = L.

(3) Suppose that aL = L. Observe that b0 = 0 < aL = L, and if bn < L then bn+1 = abn < aL = L. Then
induction on n shows that the sequence {bn} is bounded above by L.

We can combine these three results to completely determine the behaviour of the sequence {bn}.
• If there are no solutions to aL = L then the sequence {bn} diverges.

Proof. This follows from (2).

• If there is a solution to ax = x, then the sequence {bn} converges to the smallest solution to ax = x.

Proof. Suppose that there is a solution to ax = x. By (3), {bn} is bounded above. By (1) and the
monotone convergence theorem, {bn} converges. Let bn → L. By (2), L satisfies aL = L. Suppose that
L′ also satisfies aL

′
= L′. By (3), {bn} is bounded above by L′. Since bn → L, we must have L ≤ L′.

This shows that L is the smallest solution to ax = x.

Example 1. Let a =
√

2. The equation ax = x has two solutions: x = 2 and x = 4. Thus, bn → 2.

1.2 Case II: a < 1

We will rely on the fact that x 7→ ax is strictly decreasing (i.e., if x < y then ax > ay). Starting with 0 < a < 1
and repeatedly applying this inclusion-reversing property gives the following sequence of inequalities:

b0 < b2 < b1

b1 > b3 > b2

b2 < b4 < b3

b3 > b5 > b4

...
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Putting these together gives the ordering

b0 < b2 < b4 < · · · < b5 < b3 < b1.

By the monotone convergence theorem, the subsequences {b2n} and {b2n+1} both converge. The same
techniques as in the previous section allow us to determine the limits of these two sequences.

• The sequence {b2n} converges to the smallest solution to aa
x

= x.

Proof. Let b2n → L. Then b2(n+1) = aa
b2n → aa

L

by continuity of x 7→ aa
x

. However, the shifted

sequence {b2(n+1)} must converge to the same limit as the original sequence {b2n}. This forces aa
L

= L.

Suppose that L′ also satisfies aa
L′

= L′. Observe that b0 = 0 < aa
L′

= L′, and if b2n < L′ then

b2(n+1) = aa
b2n

< aa
L′

= L′. Then induction on n shows that the sequence {b2n} is bounded above by

L′. Since b2n → L, we must have L ≤ L′. This shows that L is the smallest solution to aa
x

= x.

• The sequence {b2n+1} converges to the largest solution to aa
x

= x.

Proof. Let b2n+1 → L. Then b2(n+1)+1 = aa
b2n+1 → aa

L

by continuity of x 7→ aa
x

. However, the
shifted sequence {b2(n+1)+1} must converge to the same limit as the original sequence {b2n+1}. This

forces aa
L

= L. Suppose that L′ also satisfies aa
L′

= L′. Observe that b1 = a0 > aa
L′

= L′, and

if b2n+1 > L′ then b2(n+1)+1 = aa
b2n+1

> aa
L′

= L′. Then induction on n shows that the sequence
{b2n+1} is bounded below by L′. Since b2n+1 → L, we must have L ≥ L′. This shows that L is the
largest solution to aa

x

= x.

Example 2. Let a = 1/4. The equation aa
x

= x has one solution: x = 1/2. Thus, bn → 1/2.

Example 3. Let a = 1/16. The equation aa
x

= x has three solutions: x = 1/4, x = 1/2, and x ≈ 0.36425.
Thus, b2n → 1/4 and b2n+1 → 1/2.

1.3 A Graph

We now study the solutions to the equation aa
x

= x. The graph has two components. The first component
is the unbounded curve ax = x. The second component is the curve between (0, 0) and (0, 1).
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From the graphs, we obtain the following observations:

1. If a > e1/e then the equation aa
x

= x has no solutions.

2. If 1/ee ≤ a ≤ e1/e then the equation aa
x

= x has one solution, and it is on the first component ax = x.

3. If 0 < a < 1/ee then the equation aa
x

= x has three solutions. The middle solution is on the first
component ax = x, but the smallest and largest solutions are on the second component.

Challenge: Prove these three observations. The parametrizations in the next section might be helpful.

Combining these three observations with the previous analysis proves the following theorem.

Theorem 1. If a > e1/e then {bn} tends to infinity. If 1/ee ≤ a ≤ e1/e then {bn} converges. If 0 < a < 1/ee

then {bn} does not converge, but {b2n} and {b2n+1} both converge.

1.4 Parametrization

The first component ax = x has the parametrization

(a, x) =
(
t1/t, t

)
, 0 < t <∞.

To find a parametrization of the second component, consider the equation aa
x

= x. Raising both sides to the
xth power gives the equivalent equation (ax)(a

x) = xx. Let t = ax/x. Then ax = tx so (tx)(tx) = xx. Taking
xth roots of both sides gives (tx)t = x. Then x = tt/(1−t) and a = (tx)1/x. This gives the parametrization

(a, x) =
((

t(t
−t/(1−t))/(1−t)

)
, tt/(1−t)

)
, 0 < t <∞.
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