
MATH 110, Linear Algebra, Fall 2013

Solutions to Final Exam.
1. i. T ii. T iii. T iv. T v. F vi. T vii. T viii. F ix T x. T

2. (a) v1, . . . , vk linearly independent means if for any scalars a1, . . . , ak, we have a1v1+ · · ·+akvk =
0, then we have a1 = · · · = ak = 0. The span of v1, . . . , vk is the subset of V comprising vectors
v that can be written in the form v = a1v1 + · · · + akvk for some scalars a1, . . . , ak. (b) Since
v ∈ Span(v1, . . . , vk), there are scalars c1, . . . , ck in F such that

v = c1v1 + · · · ckvk.

This equation is a nontrivial linear dependence amongst the vectors (v1, . . . , vk, v) (nontrivial since
at least the coefficient of v is nonzero), thus this list is dependent.

3. Since T is normal, the complex spectral theorem applies, and we know there is an orthonormal
basis (u1, . . . , un) for V consisting of eigenvectors for T . Pick any v ∈ V , and write it as v =
c1u1 + · · · cnun. Since this is an orthonormal basis we have ‖v‖2 = |c1|2 + · · ·+ |cn|2. Next, let the
eigenvalues of ui be λi, so we have

Tv = c1λ1u1 + · · · cnλnun,

hence using the fact that this is an orthonormal basis again, and that |λi| ≤ 1,

‖Tv‖2 = ‖c1λ1u1 + · · · cnλnun‖2 = |c1|2|λ1|2 + · · ·+ |cn|2 ≤ |c1|2 + · · ·+ |cn|2 = ‖v‖2,

which of course implies (since the norm is a nonnegative real number) that ‖Tv‖ ≤ ‖v‖.

4. For each part, we use the following facts: T is a projection iff C3 decomposes as the direct
sum of the eigenspaces E0 and E1 (recall that E0 is the null space, and E1 the range), and it’s an
orthogonal projection if furthermore E0 ⊥ E1. This gives the following answers: a. Orthogonal
Projection; b. Orthogonal Projection; c. Projection (not orthogonal); d. Orthogonal Projection.

5. First we have to find some eigenvalues and eigenvectors. By either inspection or direct calculation
we find that the vectors e1− e2, e2− e3, e3− e4, and e4− e5 are eigenvectors with eigenvalue 0, and
e1 + e2 + e3 + e4 + e5 is an eigenvector with eigenvalue 10. But now we have a basis of eigenvectors,
which means that the Jordan normal form of T is diagonal, with diagonal entries 0, 0, 0, 0, 10. From
this Jordan form we find the characteristic polynomial is z4(z − 10), and the minimal polynomial
is z(z − 10).

6. T1 is symmetric, hence diagonalisable. Therefore, it can’t have the desired minimal polynomial.
T2 is nilpotent, hence has exactly one eigenvalue (=0), so it can’t have ±1 as eigenvalues. T3 has
the desired minimal polynomial. T4 has the desired minimal polynomial. T5 is symmetric, hence
diagonalisable. T6 has the desired minimal polynomial.

7. dim range(T −1) = 6 implies that dimnull(T −1) = 8−6 = 2, so there are two 1-Jordan blocks.
As null(T − 1)2 ∩ null(T − 2)3 = {0}, and the dimensions add up to 8, we see that

C8 = null(T − 1)2 ⊕ null(T − 2)3.

Hence, the only eigenvalues are 1, 2. dimnull(T −1)2 > dimnull(T −1) gives that the 1-generalised
eigenspace is null(T − 1)2. Hence, the largest 1-Jordan block has size 2× 2, and there must be two
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of them. Since null(T − 2)3 is the 2-generalised eigenspace, we have the largest 2-Jordan block has
size at most 3. Hence, we have the following possibilities - where J(λ, i) denotes an i× i λ-Jordan
block - 

J(1, 2)
J(1, 2)

J(2, 3)
J(2, 1)

 ,

J(1, 2)

J(1, 2)
J(2, 2)

J(2, 2)

 ,

J(1, 2)

J(1, 2)
J(2, 2)

J(2, 1)
J(2, 1)

 ,


J(1, 2)
J(1, 2)

J(2, 1)
J(2, 1)

J(2, 1)
J(2, 1)


8. We have T 2 = 0 so that the only eigenvalue is 0. Since null(T ) = span(e2, e1 − e3), so the
dimension is two, we have that there are two Jordan blocks, so that Jordan form is0 1 0

0 0 0
0 0 0

 .
A Jordan basis is (v1, v2, v3), where we require that

T (v1) = 0, T (v2) = v1, T (v3) = 0.

Thus, we need v2 /∈ null(T ). Take v2 = e3. Then, v1 = T (v2) = e2. Finally, we need v3 ∈ null(T )
so that (v1, v2, v3) is linearly independent. Take v3 = e1 − e3. Then, (v1, v2, v3) is a Jordan basis.

9. a. We have
U = span(e1 − e2, e2 − e3).

Apply Gram-Schmidt to the basis (e1 − e2, e2 − e3) to obtain an orthonormal basis (v1, v2) of U ,
where

v1 =
1√
2

(e1 − e2),

v2 =
1√
6

(e1 + e2 − 2e3).
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b. It is the vector

u = ((e1 + e2) · v1) v1 + ((e2 + e3) · v2) v2 =

 1/3
1/3
−2/3


10. This can be proved: let w ∈ range(T ) be nonzero. Then, (w) is a basis of range(T ); extend

to a basis C = (w,w1, . . . , wk) of W . Let (v2, . . . , vn) be a basis of null(T ), and extend to a basis
B = (v1, . . . , vn) of V (we know that dimnull(T ) = dimV − dim range(T ) = dimV − 1). Then,
we have the matrix of T relative to B and C is

[T ]CB =


a1 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0


Consider the linear functional f : V → C defined on the basis B as

f(v2) = · · · = f(vn) = 0 ∈ C, and f(v1) = a1.

This defines a linear functional on V and, if v =
∑n

j=1 bjvj ∈ V , then

T (v) = b1a1w = f(v)w.
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