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Baire’s representation theorem

Theorem (Baire, 1899)

A real function g on a Polish space X is a pointwise limit of a
sequence of continuous functions on X if and only if g has a point
of continuity on any nonempty closed subset of X .

A real function g on a Polish space X is of Baire-class-1 if g is a
point wise limit of a sequence of continuous functions on X .

Let B1(X ) be the collection of Baire-class-1 functions on a given
Polish space X .

B1(X ) comes with the topology of pointwise convergence on X ,
i.e., the subspace topology induced from the Tychonoff cube RX .



Compact sets of Baire-class-1 functions

Theorem (Odell-Rosenthal, 1975)

Suppose that a separable Banach space X contains no isomorphic
copy of the space `1.
Then the unit ball BX∗∗ of the double-dual X ∗∗ of X considered as
a collection of functions on the dual ball BX∗ equipped with the
weak∗-topology consists of Baire-class-1 functions on BX∗ .
Moreover, every x∗∗ from BX∗∗ is a weak∗∗-limit
(i.e., pointwise limit) of a sequence (xn) ⊆ BX .

Thus if `1 * X , the ball BX∗∗ is a compact convex set of
Baire-class-1 functions on BX∗ .

Problem
Which compact are representable inside the space of Baire-class-1
functions on NN?



Helly’s space and the split interval [0, 1]× {0, 1}

Helly space is the compact convex set H of all monotone
mappings from [0, 1] to [0, 1].

The extremal points of the Helly space H is the set of all
monotone mappings from [0, 1] to {0, 1} and is homeomorphic to
the split interval [0, 1]× {0, 1}.

Thus, a representation of the split interval [0, 1]× {0, 1} as a
subspace of B1([0, 1]) is given by:

(x , 0) 7→ χ[0,x) and (x , 1) 7→ χ[0,x].



Cantor tree space: Pol’s compactum

For a Polish space X ,

A(X ) = {χ{x} : x ∈ X} ∪ {χ∅}

is a representation of the one-point compactification of the
discrete space {χ{x} : x ∈ X}.
For X = 2N and s ∈ 2<N let χs denote the characteristic function
of the corresponding basic clopen subset of 2N. Let

PA(2N) = A(2N) ∪ {χs : s ∈ 2<N}

is the Pol compactum, a separable compact subspace of B1(2N)
with χ∅ as a non-Gδ-point, the point at infinity.



James tree space

Theorem (James, 1974)

There is a separable Banach space JT such that JT ∗ is not
separable but JT contains no subspace isomorphic to `1.

Thus, the double-dual ball of JT is a compact convex set of
Baire-class-1 functions with 0∗∗ as a non Gδ-point.

In fact, the weak∗-closure of the basis of JT in the double-dual
ball of JT is naturally homeomorphic to the Pol space PA(N).
More precisely, there is a homoeomorphic embedding

Φ : PA(2N)→ BJT∗∗

such that Φ(∞) = 0∗∗ and

Φ[2<N] = the basis of JT .



The Alexandroff duplicate of 2N

The Alexandroff duplicate D(2N) = 2N × {0, 1} is represented
inside the first Baire class via the mapping
Φ : D(2N)→ 2N × A(2N) :

Φ(x , 0) = (x , χ∅) and Φ(x , 1) = (x , χ{x}).

This copy of the Alexandroff duplicate D(2N) could also be
supplemented to the separable version of the Alexandroff
duplicate SD(2N) by adding to the image of Φ the countable
dense set

{(s_0(ω), χs) : s ∈ 2<N}.



Baire-class-1 compacta

Let us say that a compact space K is a Baire-class-1
compactum if it is homeomorphic to a compact subset of B1(X )
for some Polish space X .

Problem
Which chain conditions are identified in the calss of all
Baire-class-1 compact?

More concretely, we can ask the following version of the
Souslin Problem

Problem
Suppose that a Baire-class-1 compactum K satisfies the
countable chain condition. Is K necessarily separable?



Dense metrizable subspaces

Theorem (T., 1999)

Every Baire-class-1 compactum has a dense metrizable subspace.

Corollary (T., 1999)

Every Baire-class-1 compactum that satisfies the countable chain
condition is separable.

Corollary (Bourgain, 1978)

Every Baire-class-1 compactum has a dense set of Gδ points.

Problem (Bourgain, 1978)

Is the set of all Gδ points in a Baire-class-1 compactum K a
comeager subset of K ?



Forcing and Baire-class-1 compacta

Fix an arbitrary poset P and consider it as a forcing notion.
We may (and will) restrict to the Baire class B1(NN).
In the forcing extension of P the Polish space NN has its natural
interpretation which we denote by N̂N.
Similarly, in the forcing extension of P, a continuous real
function f on NN extends to a continuous real function f̂ on N̂N.

Lemma
If (fn) is a pointwise-convergent sequence of continuous real
functions on NN then P forces that the corresponding sequence
(f̂n) is pointwise convergent on N̂N.
Moreover, if (gn) is another pointwise-convergent sequence of
continuous real functions on NN converging to the same limit then
P forces that (f̂n) and (ĝn) converge to the same limit.

Thus, every Baire-class-one function h on NN, in the forcing
extension of P, extends naturally to a Baire-calss-1 function ĥ on
N̂N.



Theorem (T., 1999)

If K is a relatively compact subset of B1(NN) then P forces that

K̂ = {f̂ : f ∈ K}

is a relatively compact subset of B1(N̂N).

Corollary (Bourgain, 1984)

For every Radon measure µ on a Baire-class-1 compactum K the
space L1(K , µ) is separable.

Proof.
If µ is not separable then by Fremlin’s theorem (second lecture)
there is a poset P satisfying the countable chain condition which
forces that the closure of K̂ maps onto the Tychonoff cube [0, 1]ω1 .
We will see that no Baire-class-1 compactum can map onto
[0, 1]ω1 .



Fix a Baire-class-1 compactum K ⊆ B1(NN). Let B(K ) be the
complete Boolean algebra of regular-open subsets of K and let

P(K ) = B(K ) \ {∅}.

Lemma
P(K ) forces that its generic filter is countably generated

This uses a particular form of point-countable π-basis of K
mentioned above in the second lecture.

Corollary

Every Baire-class-1 compactum has a σ-disjoint π-basis.



Convergence in B1(X )

Theorem (Rosenthal, 1977)

If K is a Baire-class-1 compactum then every sequence (fn) ⊆ K
has a convergent subsequence (fnk ).

In other words, every Baire-class-1 compactum is sequentially
compact.

Theorem (Rosenthal, 1977)

Every Baire-class-1 compactum is countably tight.

Theorem (Bourgain-Fremlin-Talagrand, 1978)

Every Baire-class-1 compactum is a Fréchet space.

Theorem (Bourgain-Fremlin-Talagrand, 1978)

Suppose that K is a compact subset of B1(X ) for some Polish
space X . Then conv(K ) taken in RX is included in B1(X ).



Split interval again

Note that the projection

π1 : [0, 1]× {0, 1} → [0, 1]

is a 2-to-1 continuous map from the split interval [0, 1]× {0, 1}
onto the unit interval [0, 1].
Note also that every closed subspace of [0, 1]× {0, 1} satisfies
the countable chain condition.
In fact, every closed subset of [0, 1]×{0, 1} is separable and Gδ.

Theorem (T., 1999)

If K is a Baire-class-1 compactum then either

1. K contains a closed subspace that fails the countable chain
condition, or

2. There is a continuous map f : K → M from K onto some
metric space M such that that |f −1(x)| ≤ 2 for all x ∈ M.



Theorem (T., 1999)

Let K be a Baire-class-1 compactum. Then

1. K is metrizable, or

2. K contains a closed subspace failing the countable chain
condition, or

3. K contains a homeomorphic copy of the split interval
[0, 1]× {0, 1}.

Corollary

Suppose K is a Baire-class-1 compactum in which all closed
subsets are Gδ and that K contains no copy of the split
interval. Then K is either metrizable



The duplicate of the Cantor space
Recall that

D(2N) = 2N × {0, 1}
is the Alexandroff duplicate of the Cantor space 2N with points
(x , 1) (x ∈ 2N) isolated.
The separable Alexandroff duplicate

SD(2N) = 2<N ∪ D(2N)

is obtained by adding 2<N as a dense set of isolated points.

Theorem (T., 1999)

Suppose that K is a separable Baire-class-1 compactum that
admits a continuous function f : K → M onto a metric space M
such that |f −1(x)| ≤ 2 for all x ∈ M. Then at least one of the
following three alternatives must hold:

1. K is metrizable.

2. K contains the separable duplicate SD(2N).

3. K contains the split interval [0, 1]× {0, 1}.



Forbidding the duplicate D(2N)

Theorem (T., 1999)

Suppose that K is a Baire-class-1 compactum that admits a
continuous function f : K → M onto a metric space M such that
|f −1(x)| ≤ 2 for all x ∈ M.
Then the following three conditions are equivalent:

1. Every closed subspace of K satisfies the
countable chain condition.

2. Every closed subset of K is Gδ in K .

3. K contains no copy of D(2N).



Points in Baire-class-1 compacta

Recall the Pol compactum

PA(2N) = 2<N ∪ 2N ∪ {∞},

the one-point compactification of the Cantor tree space

2<N ∪ 2N,

the locally compact space generated by the complete binary tree
2<N with 2N as a set of its branches, where

1. points of the tree 2<N are isolated, and where

2. basic-open neighbourhoods of a branch x ∈ 2N are its tails

{x � n : n ≥ m} ∪ {x}



Note that
PA(2N) \ 2<N = A(2N),

the one-point compactification of a discrete space of cardinality
continuum so the point at infinity is not a Gδ-point .

Theorem (T., 1999)

Suppose that K is a separable Baire-class-1 compactum, that z is
its non-Gδ-point, and that D is its countable dense subset of K .
Then:

1. K contains a copy of PA(2N) with z as its point at infinity
and its countable dense set included in D.

2. Moreover, the embedding Φ : PA(2N)→ K is given by a Borel
map Ψ : 2N → B1(X ).



Ramsey methods

Theorem (T., 1999)

Let fs (s ∈ 2<N) be a relatively compact subset of B1(X ) for
some Polish space X . Then there is a perfect set P ⊆ 2N and an
infinite strictly increasing sequence (nk) of integers such that for
every a ∈ 2N the sequence (fa�nk ) pointwise converges on X and,
if we let fa denote its limit,

Ψ(a, x) = fa(x)

defines a Borel function from P × X into R.

This opened the possibility of using the theory of Ramsey spaces
into the study of subsets of B1(X ) and therefore the study of
Banach spaces containing no `1.
Particularly important in this case is the Ramsey space of trees
that is based on the Halpern-Läuchli theorem.



Separable quotient problem

Theorem (Mazur, 1930)

Every infinite dimensional Banach space contains an infinite
dimensional subspace with a basis.

Problem (Banach 1930: Pelczynski 1964)

Does every infinite dimensional Banach space has an infinite
dimensional quotient with a basis?

Theorem (Johnson-Rosenthal, 1972)

Every separable infinite dimensional Banach space has an infinite
dimensional quotient with a basis.

Problem (Jphnson-Rosenthal, 1972)

Does every infinite dimensional Banach space has an infinite
dimensional separable quotient?



Unconditional sequences

Definition
A sequence xi (i ∈ I ) of points in some Banach space is
unconditional if it is normalized and if we can find a constant
C ≥ 1 such that for every pair G ⊆ H of finite subsets of the
index-set I and for every choice of scalars λi (i ∈ H), we have

‖
∑
i∈G

λixi‖ ≤ C‖
∑
i∈H

λixi‖.

Theorem (Johnson-Rosenthal 1972; Hagler-Johnson, 1977)

If the dual X ∗ of some Banach space X contains an infinite
unconditional sequence then X has an infinite dimensional
quotient with a basis.



Mycielski independence theorem

Theorem (Mycielski, 1964)

Suppose X is a perfect Polish space and that for each positive
integer n we are given a meager subset Mn of X n. Then there is a
perfect subset P of X such P(n) ∩Mn = ∅ that for every n, where

P(n) = {(x1, ..., xn) ∈ Pn : xi 6= xj for all i 6= j}.

Lemma (Argyros-Dodos-Kanellopoulos, 2008)

Suppose that X is a Polish space and that Ψ : 2N × X → R is a
Borel function such that:

1. the sequence fa = Ψ(a, ·) (a ∈ 2N) is bounded in `∞(X ),

2. the set {a ∈ 2N : fa(x) 6= 0} is countable for all x ∈ X .

Then there is a perfect set P ⊆ 2N such that the sequence
fa (a ∈ P) is unconditional in `∞(X ).



Theorem (Argyros-Dodos-Kanellopoulos, 2008)

Every infinite dimensional dual Banach space X ∗has an infinite
dimensional quotient with a basis.

Proof.
We may assume that X ∗ is not separable and that the predial X is
separable and that it contains no `1.
Then the unit ball BX∗∗ is a separable Baire-class-1 comactum
with 0∗∗ as its non-Gδ-point.
By the structure theorem there is an embedding

Φ : PA(2N)→ BX∗∗

such that Φ(∞) = 0∗∗ and such that Φ is given by a Borel map

Ψ : 2N × BX∗ → R.

Note that the hypotheses of the lemma are satisfied .
So X ∗∗ has an infinite unconditional sequence and so X ∗ has the
required quotient.



Classifying families of sequences

Definition
A co-ideal on N is a family H of infinite subsets of N such that

1. if M ⊆ N and if M ∈ H then N ∈ H.
2. if M ∈ H and M = M0 ∪M1 then either M0 ∈ H or M1 ∈ H.

A co-ideal H on N is selective if for every M ∈ H and every
f : M → N there is N ∈ H, N ⊆ M such that f � N is either
constant or one-to-one.

Example

The co-ideal of infinite subsets of N is selective.

Theorem (Mathias, 1977)

A co-ideal H is selective if and only if for every finite
Souslin-measurable colouring of the collection N[∞] of all infinite
subsets of N there is M ∈ H such that M [∞] is monochromatic.



Fix a sequence (xn) in a Baire-class-1 compactum K and fix a
point x ∈ K \ {xn : n ∈ N}. Let

HK (x , (xn)) = {M ⊆ N : x ∈ {xn : n ∈ M}}.

Theorem (T. 1995)

HK (x , (xn)) is a selective co-ideal, or equivalently, for every finite
Souslin-measurable colouring of the collection N[∞] of all infinite
subsets of N there is M ∈ HK (x , (xn)) such that M [∞] is
monochromatic.

Corollary (Bourgain-Fremlin-Talagrand, 1978)

Every Baire-class-1 compactum is a Fréchet space.

Proof.
Color a subset N of N blue if the sequence (xn)n∈N converges to
x ; otherwise, colour N red.



Gaps
Let

CK (x , (xn)) = {M ⊆ N : (xn)n∈M converges to x}
and

DK (x , (xn)) = {M ⊆ N : x 6∈ {xn : n ∈ M}}.

Lemma
CK (x , (xn)) and CK (x , (xn)) are two orthogonal families of subsets
of N that can’t be separated unless x is an isolated point in K .

Problem
What is the structure of gaps (C,D) of this form?

Remark
Recall that the Von Neumann-Maharam problem asks the same
for the gap formed by the family of sequences in B+ that converge
to 0 and the family of sequences that do not accumulate to 0,
where B is a complete Boolean algebra satisfying the countable
chain condition and the weak countable distributive law.



A canonical gap

Consider the following gap on the complete binary tree 2<N

A0(2<N) = {M ⊆ 2<N : M is an infinite antichain},

A1(2<N) = {M ⊆ 2<N : M conains no infinite antichain}.

Note that this is really the gap of the form

(CK (x , (xn)),DK (x , (xn))),

where K is the Pol compactum PA(2N).

Theorem (T., 1999)

Every gap of the form (CK (x , (xn)),DK (x , (xn))), where K is a
Baire-class-1 compactum and x its non-Gδ-point, has a restriction
isomorphic to the gap (A0(2<N),A1(2<N)).



General theory of gaps

Definition
A preideal on a countable index-set N is a family I of infinite
subsets of N such that if x ∈ I and y ⊆ x is infinite, then y ∈ I .

Definition
Let Γ = {Γi : i ∈ n} be a n-sequence of preideals on a set N and
let X be a family of subsets of n.

1. We say that Γ is separated if there exist subsets
a0, . . . , an−1 ⊆ N such that

⋂
i∈n ai = ∅ and x ⊆∗ ai for all

x ∈ Γi , i ∈ n.

2. We say that Γ is an X-gap if it is not separated, but⋂
i∈A xi =∗ ∅ whenever xi ∈ Γi , A ∈ X.

Definition
When X is the family of all subsets of n of cardinality 2, an X-gap
will be called an n-gap,
When X consists only of the total set {0, . . . , n − 1}, then an
X-gap will be called an n∗-gap.



Definition
The orthogonal, I⊥, of a preideal I on N is the family of all infinite
subsets of N that have finite intersections with all sets from I .

Definition
For Γ and ∆ two n∗-gaps on countable sets N and M, respectively,
we say that

Γ ≤ ∆

if there exists a one-to-one map φ : N → M such that for i < n,

1. if x ∈ Γi then φ(x) ∈ ∆i .

2. If x ∈ Γ⊥i then φ(x) ∈ ∆⊥i .

Definition
Two n∗-gaps Γ and Γ′ are called equivalent if Γ ≤ Γ′ and if Γ′ ≤ Γ.



A Finite Basis Theorem

Definition
An ∗-gap Γ is analytic if all the preideals of Γ are analytic
families of subsets of the countable index set N.

Definition
An analytic n∗-gap Γ is said to be a minimal analytic n∗-gap if
for every other analytic n∗-gap ∆, if ∆ ≤ Γ, then Γ ≤ ∆.

Theorem (Aviles-Todorcevic, 2013)

Fix a natural number n. For every analytic n∗-gap Γ there exists a
minimal analytic n∗-gap ∆ such that ∆ ≤ Γ. Moreover, up to
equivalence, there exist only finitely many minimal analytic
n∗-gaps.

Remark
Up to permutations there exist exactly
5 minimal analytic 2-gaps ( 9 in total) and
163 minimal analytic 3-gaps (933 in total).
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