Chain Conditions of Horn and Tarski

Stevo Todorcevic

Berkeley, April 2, 2014

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Outline

- 1. Global Chain Conditions
- 2. The Countable Chain Condition
- 3. Chain Conditions of Knaster, Shanin and Szpilrajn

- 4. Borel-generated examples
- 5. Martin's axiom
- 6. Proper Forcing Axiom
- 7. Applications of MA and PFA
- 8. Chain conditions on compact spaces
- 9. A relativization of MA and PFA
- 10. The split interval

Global Chain Conditions

Definition

A subset A of a Boolean algebra \mathbb{B} is **centered** if $\bigwedge F > 0$ for all finite $F \subseteq A$.

For a positive integer *n*, a subset *A* of a Boolean algebra \mathbb{B} is *n*-centered if $\bigwedge F > 0$ for all $F \subseteq A$ of cardinality at most *n*.

When n = 2, the *n*-centered subsets are also known as **linked** subsets.

Definition

A Boolean algebra $\mathbb B$ is $\sigma\text{-centered}$ if $\mathbb B^+$ can be decomposed into countably many centred subsets.

For a positive integer n, a Boolean algebra \mathbb{B} is σ -n-centered if \mathbb{B}^+ can be decomposed into countably many n-centred subsets.

Proposition (Horn-Tarski, 1948)

Every σ -centered Boolean algebra supports a strictly positive finitely additive measure.

Proposition

A Boolean algebra \mathbb{B} is σ -centered if and only if its Stone space is separable

Proposition

A σ -2-centered Boolean algebras can have cardinality at most continuum.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition (Dow-Steprans, 1994)

The following are equivalent for a measure algebra ${\mathbb B}$:

- 1. \mathbb{B} is σ -2-centered.
- 2. \mathbb{B} is σ -n-centered for all n.
- 3. \mathbb{B} has density at most continuum.

Definition (Horn and Tarski, 1948)

A Boolean algebra \mathbb{B} satisfies σ -finite chain condition if it can be decomposed as $\mathbb{B} = \bigcup_{n=1}^{\infty} \mathbb{B}_n$ such that no \mathbb{B}_n contains an infinite sequence (a_k) such that $a_k \wedge a_l = 0$ for $k \neq l$.

Definition (Horn and Tarski, 1948)

A Boolean algebra \mathbb{B} satisfies σ -bounded chain condition if it can be decomposed as $\mathbb{B} = \bigcup_{n=1}^{\infty} \mathbb{B}_n$ such that for every *n* there is k(n) such that \mathbb{B}_n contains no sequence $(a_k)_{k=1}^{k(n)}$ such that $a_k \wedge a_l = 0$ for $k \neq l$.

(日) (同) (三) (三) (三) (○) (○)

Local Chain Conditions

Definition

A Boolean algebra \mathbb{B} satisfies the **countable chain condition** or **Souslin condition** if every uncountable subset of \mathbb{B}^+ contains two elements with positive intersection.

Problem (Souslin, 1920)

Are the following two conditions equivalent for every Boolean algebra with an ordered set of generators?

- 1. \mathbb{B} satisfies the countable chain condition.
- 2. \mathbb{B} is σ -centered.

Souslin Hypothesis is the statement that the answer to this question is **positive**.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition

A Boolean algebra \mathbb{B} satisfies the Knaster condition if every uncountable subset of \mathbb{B}^+ contains an uncountable 2-centered subset.

Proposition

Every measure algebra satisfies Knaster condition.

Proposition (Horn-Tarski, 1948)

Every Boolean algebra satisfying the σ -finite chain condition satisfies also Knaster condition.

Proposition (Knaster, 1941)

The following two conditions equivalent for every Boolean algebra with an ordered set of generators:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. \mathbb{B} satisfies the Knaster condition.
- 2. \mathbb{B} is σ -centered.

Problem (Knaster and Szpilrajn, 1941)

Are the following two conditions equivalent for **every** Boolean algebra?

- 1. \mathbb{B} satisfies the countable chain condition.
- 2. \mathbb{B} satisfies the Knaster condition.

Let the **Knaster Hypothesis** be the statement that **every** Boolean algebra satisfying the **countable chain condition** satisfies also **Knaster condition**

Proposition (Knaster, 1941)

Knaster Hypothesis implies Souslin Hypothesis.

Definition

A Boolean algebra \mathbb{B} satisfies the **Shanin condition** if every **uncountable subset** of \mathbb{B}^+ contains an **uncountable centered subset**.

Example

Compact groups satisfy Shanin condition.

Theorem (Shanin, 1948)

Shanin condition is preserved by arbitrary Tychonoff products.

Let the Shanin Hypothesis be the statement that every Boolean algebra satisfying the **countable chain condition** satisfies **Shanin condition**.

Clearly, Shanin Hypothesis implies Knaster Hypothesis .

Problem

Are the two hypotheses equivalent?

Products

Theorem (Szpilrajn, 1941)

Knaster condition is preserved by arbitrary Tychonoff products.

Problem (Szpilrajn, 1941)

Is the countable chain condition invariant under products?

Let the **Szpilrajn Hypothesis** be the hypothesis that the **countable chain condition** is invariant under **products**.

Theorem (Kurepa, 1950)

Szpilrajn Hypothesis implies Souslin Hypothesis.

Borel theory

Theorem (Shelah, 1995)

The countable chain condition is productive in the class of **Borel-generated** Boolean algebras.

In particular, **Szpilrajn Hypothesis is true** for Borel generated Boolean algebras.

Theorem (T., 1991)

If $\mathfrak{b} = \omega_1$, the Borel-generated Boolean algebra $\mathbb{T}([0,1])$ fails to satisfy Knaster condition

In particular, the **Knaster Hypothesis is not provable** on the basis of standards axioms of set theory even if we restrict it to the **Borel context**. Recall from the first lecture:

Theorem (T., 1991)

For every separable metric space X, the Boolean algebra $\mathbb{T}(X)$ satisfies the countable chain condition.

Theorem (Erdös, 1963)

The measure algebra of [0, 1] is a Borel-generated Boolean algebra satisfying Knaster condition but failing Shanin condition if the Lebesgue measure is not \aleph_1 -additive.

Theorem (Solovay, 1970)

The **amoeba algebra** also has these properties but it does not support a measure.

Theorem (T., 1986)

For every positive integer $n \ge 2$ there is a Borel-generated Boolean algebra that is σ -n-centered but is not σ -(n + 1)-centered, and in fact fails to have (n + 1)-Knaster property if $\mathfrak{b} = \omega_1$

Theorem (T., 1991)

There is a Borel-generated Boolean algebra satisfying Shanin condition but fails σ -finite chain condition.

Martin's axiom

Definition

A subset D of a **partially ordered set** \mathbb{P} is **dense** if

$$(\forall p \in \mathbb{P})(\exists q \in D) \ q \leq p.$$

A subset F of \mathbb{P} is a **filter** if

1.
$$(\forall p \in F)(\forall q \in F)(\exists r \in F) \ r \leq p \land r \leq q,$$

2.
$$(\forall p \in F)(\forall q \in \mathbb{P}) \ p \leq q \rightarrow q \in F.$$

Martin's axiom asserts that for every poset \mathbb{P} satisfying the **countable chain condition** and every family \mathcal{D} of **cardinality less than continuum** many dense subsets of \mathbb{P} there is a filter of F of \mathbb{P} intersecting all the sets from \mathcal{D} .

 MA_{\aleph_1} is Martin's axiom for families \mathcal{D} of cardinality at most \aleph_1 .

Theorem (Solovay-Tennenbaum, 1971)

Souslin Hypothesis *is consistent with the* **negation of the Continuum Hypothesis**.

Theorem (Jensen, 1974)

Souslin Hypothesis *is consistent with the* **Continuum Hypothesis***.*

Theorem (Solovay-Tennenbaum, 1971)

Martin's axiom *is consistent with the* negation of the Continuum Hypothesis.

Theorem (Martin-Solovay, 1971)

 MA_{\aleph_1} implies Souslin Hypothesis .

Theorem (Martin-Solovay, 1971)

Martin's axiom implies that the Lebesgue measure is κ -additive for every cardinal κ less than the continuum.

Theorem (Kunen, 1971)

 MA_{\aleph_1} implies Shanin Hypothesis.

Theorem (Hajnal-Juhasz, 1971)

Martin's axiom implies that every Boolean algebra of cardinality less that the continuum satisfying the countable chain condition is σ -cetered.

Theorem (Todorcevic-Velickovic, 1987)

The following are equivalent

- 1. Martin's axiom.
- 2. Every Boolean algebra of cardinality less that the continuum satisfying the countable chain condition is σ -cetered.

Theorem (Todorcevic-Velickovic, 1987)

The following are equivalent

- 1. MA_{\aleph_1} .
- 2. Shanin Hypothesis.

Compact Spaces

Definition

A topological space X has **countable tightness** or is **countably tight** if for every set $A \subseteq X$ and $x \in \overline{A}$ there is countable $B \subseteq A$ such that $x \in \overline{B}$.

Example

If X is a **sequential space** (i.e., if sequentially closed subsets of X are closed), then X is **countably tight**.

Definition

A π -basis for a topologicl space X is a collection \mathcal{P} of nonempty open subsets of X such that for every nonempty open subset U of X there is P in \mathcal{P} such that $P \subseteq U$.

Theorem (Shapirovski, 1987)

Every compact countably tight space has a **point-countable** π -basis.

Corollary (Shapirovski, 1987)

 MA_{\aleph_1} implies that every countably tight compact space satisfying the countable chain condition is separable.

Corollary (Juhasz, 1970)

 MA_{\aleph_1} implies that every first countable compact space satisfying the countable chain condition is separable.

Theorem (T., 2000)

The following are equivalent

- 1. MA_{\aleph_1} .
- 2. Every compact first countable space satisfying the countable chain condition is separable.
- 3. Every compact first countable space satisfying the countable chain condition satisfies the Shanin condition.

Two subsets A and B of a topological space X are **separated** whenever

$$\overline{A} \cap B = \emptyset = A \cap \overline{B}.$$

We say that X satisfies the separation axiom T_5 whenever separated subsets of X are **separated by open sets**.

Example

Metric spaces and ordered space are T_5 .

Theorem (Shapirovski, 1975; T., 2000)

 MA_{\aleph_1} implies that every T_5 compact space satisfying the countable chain condition is separable and, in fact, has a countable π -base.

Biorthogonal systems

A biorthogonal system in a Banach space X is a sequence

$$\{(x_i, f_i) : i \in I\} \subseteq X \times X^*$$

such that $f_i(x_j) = \delta_{ij}$.

Example

The function space C(S) of the **split interval** $S = [0,1] \times \{0,1\}$ has biorthogonal system

$$\{(f_x, \mu_x) : x \in [0, 1]\}$$

where f_x is the characteristic function of the set $\{s \in S : s < (x, 1)\}$ and $\mu_x = \delta_{(x,1)} - \delta_{(x,0)}$.

Theorem (T., 1998)

 MA_{\aleph_1} implies that any function space C(K) in which all biorthogonal systems are countable must be separable.

Radon measures

A **Radon measure** on a topological space X is a σ -additive probability measure μ defined of all open subsets of X such that

```
\mu(A) = \sup\{\mu(K) : K \subseteq A \text{ is compact } \}
```

for every measurable set $A \subseteq X$.

Problem

Which conditions on a compact space X guarantee that $L^1(X, \mu)$ is **separable** for every Radon probability measure μ on X?

Proposition

if a compact space X maps onto $[0,1]^{\omega_1}$ then it supports a **non-separable** Radon probability measure .

Theorem (Fremlin, 1997)

 MA_{\aleph_1} implies that every compact space that supports non-separable Radon measure maps onto $[0, 1]^{\omega_1}$.

Higher Forcing Axiom

Definition (Shelah, 1980)

A poset ${\mathbb P}$ is proper if

for all $p \in \mathbb{P}$ and every **countable elementary submodel** M of some large enough structure of the form $(H(\theta), \in)$ such that $p, \mathbb{P} \in M$ there is $q \leq p$ that is (M, \mathbb{P}) -generic i.e., for every dense-open subset D of \mathbb{P} such that $D \in M$ and every

 $r \leq q$ there is $\overline{r} \in D \cap M$ that is **compatible** with r.

Example

Every poset satisfying the countable chain condition is proper.

Theorem (Shelah, 1980)

Any countable-support iteration of proper poset is proper.

Definition (Baumgartner, 1980)

Let the **Proper Forcing Axiom** be the statement that for every **proper poset** \mathbb{P} and every family \mathcal{D} of **no more than** \aleph_1 many dense subsets of \mathbb{P} there is a filter of F of \mathbb{P} intersecting all the sets from \mathcal{D} .

Thus, PFA is a strengthening of MA_{\aleph_1} .

Theorem (Baumgartner, 1980)

The Proper Forcing Axiom is consistent relative to the consistency of a supercompact cardinal.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (T., 1984)

PFA implies that \Box_{κ} fails for all cardinals $\kappa \geq \omega_1$.

Theorem (Baumgartner, 1973, 1984)

PFA implies that all \aleph_1 -dense sets of reals are order-isomorphic.

Theorem (Woodin, 1982, 1987)

PFA implies that every norm on a Banach algebra of the form C(K) is equivalent to the supremum norm.

Theorem (T., 1989)

PFA implies that every **open graph** *on a separable metric space in which all* **complete subgraphs are countable** *must be* **countably chromatic**.

Theorem (Farah, 2008)

The Open Graph Axiom implies that all automorphisms of the Calkin algebra are inner.

Five Cofinal Types

Theorem (T., 1985)

PFA implies that for every **directed set** D of cardinality at most \aleph_1 there is a directed set E on the list

 $1, \omega, \omega_1, \omega imes \omega_1$ and $[\omega_1]^{<\omega}$

such that D and E are of the same **cofinal type** *i.e.*, can be isomorphically embedded as cofinal subsets of a single directed set.

Example

Given a directed set D, let

 $\mathcal{I}_D = \{A \subseteq D : A \text{ is strongly unbounded}\}.$

Then D is of cofinal type $[\omega_1]^{<\omega}$ if and only if there is uncountable $X \subseteq D$ such that all countable subsets of X are in \mathcal{I}_D .

Theorem (T., 1985, 2000)

PFA implies the **P-Ideal Dichotomy**.

Five Linear Orderings

Theorem (Baumgartner, 1973, 1984; Moore, 2005) PFA implies that every uncountable linear ordering contains an isomorphic copy of the one on the list

 $\omega_1, \omega_1^*, B, C \text{ and } C^*,$

where B is any set of reals of cardinality \aleph_1 , and where C is any uncountable linear ordering whose cartesian square can be covered by countably many chains.

Theorem (Martinez-Ranero, 2012)

PFA implies that the class of all uncountable linear orderings that are orthogonal to ω_1 , ω_1^* and \mathbb{R} is well-quasi-ordered.

Biorthogonal systems again

Theorem (T., 2006)

PFA implies that every Banach space *in which all* biorthogonal systems are countable *must be* separable.

Theorem (T., 2006)

PFA implies that every Banach space X if density at most \aleph_1 has a **quotient** with a **Schauder basis** which can be assumed to be or length ω_1 if X is not separable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Problem (Banach, 1930; Pelczynski, 1964)

Does every infinite-dimensional Banach space has an infinite-dimensional quotient with a Schauder basis?

Chain conditions again

Theorem (T., 1983)

PFA implies that every regular space in which all discrete subspaces are countable must be Lindelöf.

Theorem (Balog, 1989)

PFA implies that every **countably compact** *space in which all* **free sequences are countable** *must be* **Lindelöf** *and, therefore,* **compact.**

Definition

A **free sequence** in a topological space X is a subset Y with a well-ordering < such that

$$\overline{\{y \in Y : y < x\}} \cap \overline{\{y \in Y : x \le y\}} = \emptyset.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

It is known that a compact space X is **countably tight** if and only **all free frequencies in** X **are countable**.

Corollary (Balog, 1989)

PFA implies that all compact **countably tight** spaces are **sequential**.

Corollary (Dow, 1990)

PFA implies that every compact countably tight space has a G_{δ} -point.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Nyikos, Soukup, Velickovic, 1995) OGA implies every compact separable *T*₅-space is countabley tight.

Definition

Sequential space of **sequential index 1** are called **Fréchet spaces** Thus, X is a **Fréchet space** if for every set $A \subseteq X$ and $x \in \overline{A}$ there is a sequence $(a_n) \subseteq A$ such that $a_n \to x$.

Example

A complete Boolean algebra satisfying the **countable chain condition** and the **weak countable distributive law** is a **Fréchet space** in its topology of sequential convergence.

Theorem (T., 2000)

PFA implies that every compact T_5 -space satisfying the countable chain condition is Fréchet.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A relativization of MA and PFA

A coherent Souslin tree is a downwards closed subtree S of $\omega^{<\omega_1}$ such that for all $s, t \in S$,

 $\{\alpha \in \operatorname{dom}(s) \cap \operatorname{dom}(t) : s(\alpha) \neq t(\alpha)\}$ is finite.

Fix a coherent Souslin tree ${\mathbb S}$ from now on.

Let $MA_{\aleph_1}(\mathbb{S})$ be the restriction of MA_{\aleph_1} to posets \mathbb{P} such that $\mathbb{P} \times \mathbb{S}$ satisfies the **countable chain condition**.

Similarly, let PFA(S) be the restriction of PFA to all proper posets \mathbb{P} that **preserve** S, a condition essentially equivalent to the **product** $\mathbb{P} \times S$ is proper.

Theorem (Larson-Todorcevic, 2002)

If $MA_{\aleph_1}(\mathbb{S})$ holds then \mathbb{S} forces that a compact space X is metrizable if and only if its square X^2 is T_5 .

```
Theorem (T., 2011)
```

PFA(S) implies that S forces the **Open Graph Axiom**.

```
Theorem (T., 2011)
```

PFA(S) implies that S forces the **P-Ideal Dichotomy**.

Theorem (T., 2011)

PFA(S) implies that S forces that if X is a compact T_5 -space satisfying countable chain condition then all closed subsets of X are G_{δ} .

How critical is the split interval $[0,1] \times \{0,1\}$?

Problem

Is the split interval the only absolute obstruction towards the metrizability of a compact T_5 space satisfying the countable chain condition?

More precisely, can one find a non-metrizable compact space X with all closed subsets G_{δ} but X is **orthogonal to the split interval**, *i.e.*, *shares no uncountable subspace with* $[0,1] \times \{0,1\}$.

We shall come back to this problem in the third lecture.